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Abstract
The creation of new blood vessels is referred to as angiogenesis. 
Endothelial cells, which line the inside wall of blood arteries, 
migrate, proliferate, and differentiate during this process. Chemical 
cues in the body influence the process of angiogenesis. This study 
intends to highlight the expression of various angiogenic indicators 
throughout various diseases, the involvement of pro-angiogenic 
and anti-angiogenic factors during angiogenesis, and the use of 
angiogenic inhibitors during antiangiogenic therapy, particularly in 
cancer.
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Introduction
Angiogenesis, or the formation of new blood vessels from pre-
existing vessels that allow oxygen and nutrients to reach the 
body’s tissues, is not only important during embryogenesis and 
wound healing, but it also plays a role in the pathogenesis of many 
diseases, including cancer, proliferative retinopathy, and chronic 
inflammatory conditions. Angiogenesis regulation is linked to 
disorders like rheumatoid arthritis, diabetes, atherosclerosis, and 
cancer. Angiogenesis is a tightly controlled process. 

The sequence of events that leads to new vessel formation begins 
with endothelial cell activation by an angiogenic stimulus, 
which causes the basement membrane and extracellular matrix 
to breakdown; then, the endothelial cells migrate and divide, 
forming new vessels, which mature with basement membrane 
reconstruction as the final step in the sequenc [1].

Angiogenesis inducers include members of the vascular 
endothelial growth factor (VEGF) family, angiopoietins, 
transforming growth factors, platelet-derived growth factor, 
thrombospondin-1 (TSP-1), tumor necrosis factor-alpha (TNFα), 
interleukins, and members of the fibroblast growth factor family. 
Angiogenesis occurs when proangiogenic and antiangiogenic 
factors fall out of balanc [2].

Proangiogenic factors and Antiangiogenic factors
Classical and non-classical proangiogenic factors (PFs) that 
activate in tumors induce angiogenesis [3]. Proangiogenic 
factors (PF) are potential targets of antiangiogenic therapies 
(e.g. monoclonal antibodies). All PFs induce the overexpression 
of several signaling pathways that lead to the migration and 
proliferation of endothelial cells and pericytes contributing to 
tumor angiogenesis and survival of cancer cells [4]. 

Proangiogenic factors are classed as classical or non-classical 
angiogenic factors.
Classical proangiogenic factors
•	 Vascular endothelial growth factor (VEGF) 
•	 Fibroblast growth factor-2 (FGF-2) 
•	 Platelet-derived growth factor (PDGF) 
•	 Platelet-Derived Endothelial Cell Growth Factor (PD- 

ECGF) 
•	 Angiopoietins (Ang) 
•	 Hepatocyte growth factor (HGF) 
•	 Insulin-like growth factors (IGFs)
•	 Non-classical proangiogenic factors
•	 Stem cell factor (SCF) Stem cell factor (SCF) is a GF 

overexpressed in various inflammatory diseases 
•	 Tryptase. Tryptase is a preformed active neutral serine 

protease that is abundantly stored in the MC secretory 
granules.

•	 Chymase.

The main proangiogenic factors include VEGF and members of 
the angiopoietin family. Alternative splicing produces a variety of 
VEGF isoforms. The proliferation and migration of endothelial 
cells, as well as an increase in blood artery permeability, are all 
impacts of VEGF. VEGF binds to the VEGFR-1 and VEGFR-2 
tyrosine kinase receptors, which are mostly produced by 
endothelial cells [5]. The most potent pro-angiogenic protein is 
vascular endothelial growth factor-A. It causes endothelial cells 
to proliferate, sprout, and form tubes.
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Tie-2 is the receptor for angiopoietins [6]. Angiopoietin-1 
promotes the development and stabilization of newly created 
vasculature by working in tandem with VEGF. Angiopoietin-2 
is thought to be a natural angiopoietin-1 antagonist that makes 
endothelial cells more sensitive to the effects of VEGF.
 
Angiogenesis is significantly influenced by inflammatory 
mediators. Proangiogenic agents, such as VEGF or angiopoietins, 
upregulate many pro-inflammatory pathways, resulting in 
leukocyte recruitment, infiltration, and inflammatory mediator 
release [7]. The interaction of inflammation and angiogenesis 
is demonstrated by the ability of VEGF to drive T cells towards 
a T helper 1 phenotype by increasing IFN- and lowering IL-10 
production [8].

Thrombospondins (TSP), angiostatin, and endostatin are the 
most important anti-angiogenic factors. TSP-1, -2, -3, -4, and 
TSP-5/COMP are now part of the TSP family. They carry out a 
variety of tasks by binding to matrix proteins, plasma proteins, 
and cytokines [9-12].

The involvement of proangiogenic and antiangiogenic 
factors in the angiogenesis process
Urokinase plasminogen activator (uPA), tissue plasminogen 
activator (tPA), and metalloproteinases (MMPs) act as 
proangiogenic factors during basement membrane disintegration, 
whereas tissue inhibitors of metalloproteinases (TiMPs) and 
Plasminogen Activator Inhibitor (PAI) act as antiangiogenic 
factors. During endothelial cell migration, vascular endothelial 
growth factors (VEGF-A, VEGF-B, VEGF-C, VEGF-D) 
behave as proangiogenic factors, while thrombospondin and 
angiostatin act as antiangiogenic factors. Platelet-derived 
growth factor (PDGF), platelet-derived endothelial cell growth 
factor (PDECGF), and fibroblast growth factor (FGF) all operate 
as proangiogenic agents during endothelial cell proliferation. 
Antiangiogenic factors such as endostatin and prolactin may 
be present. Proangiogenic factors such as angiopoietin 1, tumor 
growth factor (TGF-), epidermal growth factor (EGF), and 
angiogenin are involved in the formation of lumen-bearing cords. 
Antiangiogenic agents include interferons and angiopoietin 2 
[4].

Angiogenic inhibitors during cancer treatment
Angiogenesis inhibitors are distinct cancer-fighting drugs in that 
they impede the formation of blood vessels that support tumor 
growth rather than tumor cell growth [13].

Angiogenesis inhibitors disrupt blood vessel creation at various 
stages in a variety of ways Some are monoclonal antibodies 
that identify and bind to VEGF selectively. The VEGF receptor 
cannot be activated when VEGF is coupled to these medications. 
Other angiogenesis inhibitors bind to VEGF and/or its receptor, 
as well as other receptors on endothelial cell surfaces and other 
proteins in downstream signaling cascades, and prevent them 
from acting. Some angiogenesis inhibitors are antiangiogenic 
immunomodulatory medicines (agents that stimulate or suppress 
the immune system) [13].
 
Angiogenesis inhibitors appear to be most effective when coupled 
with other medications in some malignancies. Angiogenesis 
inhibitors are given over a long period because they function by 
slowing or preventing tumor growth without destroying cancer 
cells [13].

Expression of different angiogenesis markers in various 
diseases. Expression of Angiogenesis Markers in Rheumatoid 
Arthritis (RA) and Cardiovascular diseases following 
Rheumatoid Arthritis.

Rheumatoid arthritis is an inflammatory and autoimmune 
illness. Uncontrolled cell division, an inflammatory condition, 
and the creation of new vessels are all features of RA, just as 
they are in cancer. The synovial membrane and tendons have 
an inflammatory infiltration, as well as synovial-membrane 
hyperplasia. The loss of function is caused by the destruction 
of cartilage and subchondral bone. The progression of chronic 
disease is aided by the proliferation of blood vessels. The synovial 
mass requires a considerable amount of nutrients and oxygen, 
and the enlarged vascular network allows inflammatory cells 
and pro-inflammatory cytokines easy access to the synovium. 
In addition to the growth in blood vessels, the location of blood 
vessels inside the synovium changes, 

Hypoxia promoted by synovial proliferation, together with 
the release of pro-inflammatory factors, acts as a powerful 
proangiogenic stimulus. Hypoxia-inducible factor (HIF) is 
highly inducible by hypoxia and inflammatory mediators, 
promoting angiogenesis and contributing to the pathogenesis of 
RA [14]. HIF induces the expression of proangiogenic factors 
and stabilizes VEGF gene transcription.

The rheumatoid synovium expresses a variety of proangiogenic 
factors [15,16]. Some of these factors, such as FGF, PDGF, 
HGF, and EGF, are not specific to angiogenesis. Overexpression 
expression of angiogenesis factors, most prominently VEGF, 
angiopoietins -1 and -2, and the angiopoietin receptor, tie-2, is 
found in inflammatory joint disorders, including RA [17-22]. In 
addition, in the rheumatoid synovium, upregulation of adhesion 
molecules occurs and is reduced with treatment, most commonly 
TNF-antagonist therapy [18].

In vivo and in vitro, conventional DMARDs, as well as 
NSAIDs and glucocorticoids, have been demonstrated to have 
antiangiogenic effects. Proangiogenic mediator inhibition or the 
delivery of cytokines that typically inhibit angiogenesis, such as 
angiostatin and thrombospondin [23-28].

The risk of cardiovascular disease is increased in those with 
RA. Increased amounts of circulating inflammatory mediators 
in RA may promote endothelial cell activation and damage, 
contributing to endothelial dysfunction. Early-stage atheroma 
lesions are characterized by endothelial dysfunction. Atheroma 
development is strongly linked to abnormalities in arterial 
endothelial function. RA is linked to changes in endothelial cell 
morphology and function, as well as changes in the number and 
distribution of blood vessels [23]. 

Even in young patients with minimal cardiovascular risk factors, 
endothelial impairment has been found in early-stage RA [29]. 
Treatment increases endothelial function, particularly with 
TNF-antagonists [30-32]. Endothelial progenitor cells (EPCs) 
are responsible for the development of new blood vessels in 
adults, and their absence has been linked to poor cardiovascular 
outcomes. They are also a biological marker for vascular function 
and increased cardiovascular risk. EPC levels in the peripheral 
blood of patients with active RA are lower. In individuals with 
inactive illness or those using TNF blockers or glucocorticoids, 
EPC levels are within normal limits [33].



Angiogenesis markers during kidney diseases.
The influence of angiogenic factors and chronic kidney 
disease
Higher circulating VEGF-A and pentraxin-3 levels, as well as 
a lower angiopoietin-1/VEGF-A ratio, may be related to an 
increased risk of CKD due to the role of an angiogenic factor 
imbalance in the etiology of kidney disease. Angiopoietin-1 
treatment reduced tubular damage in unilateral ureteral 
obstruction, lowered albuminuria in streptozotocin-induced type 
1 diabetes [16], and stabilized peritubular capillaries in folic acid 
nephropathy, albeit with profibrotic and inflammatory effects. 
Angiopoietin-1 deficiency, along with microvascular stress, 
resulted in organ damage, increased angiogenesis, and fibrosis 
[22].

The findings on the connection between angiogenic factors and 
CKD in humans are somewhat inconsistent, most likely due to 
differences in sample size, research population, angiogenic factor 
sources, and covariables included in the studies. In a small cohort 
study, vascular endothelial growth factor (VEGF)-A predicted 
CKD progression in diabetic individuals [23]. However, another 
study found that VEGF expression was reduced in biopsied 
kidney tissue from diabetic nephropathy patients [20]. In dialysis 
patients, elevated soluble VEGF receptor-1 (sVEGFR-1) 
and decreased VEGFR-2 were related to mortality [24, 25]. 
Angiopoietin-1 regulates endothelial cell migration, adhesion, 
and survival, and co-expression of angiopoietin-1 and VEGF 
promotes angiogenesis [26].

In CKD patients, angiopoietin-1 levels are lower and 
angiopoietin-2 levels are higher [30,31]. Angiopoietin-2 [31-
33] and angiopoietin-1 have been linked to subclinical CVD in 
CKD [33]. Angiopoietin-2 has been linked to an increased risk 
of death in CKD patients [30]. Pentraxin-3 can bind fibroblast 
growth factor-2 (FGF2) and operate as an FGF2 antagonist, 
inhibiting FGF2-dependent angiogenesis [32].

Angiogenesis Markers in Patients with Renal Cell Carcinoma 
Receiving Sunitinib Therapy
In patients with advanced renal cell carcinoma, sunitinib is a 
tyrosine kinase inhibitor (TKI) that targets tumor angiogenesis 
(RCC) [34].

Angiogenesis is critical in the development of renal cell 
carcinoma, and clear cell renal cell carcinoma (CCRCC). 
Because of their anti-angiogenic properties, VEGF-targeted 
treatments have been implicated in the management of RCC and 
CCRCC. These treatments have also been shown to improve the 
survival rate of individuals with advanced kidney cancer [35,36].
Abnormal VEGF expression in renal cell carcinoma correlates 
with advanced stage, high nuclear grade, and increased 
microvascular density.
A study evaluating the effect of anti-angiogenic medicines, 
such as bevacizumab, found that circulating VEGF levels were 
reduced [37].

PDGF is a powerful mitogen that has also been linked to tumor 
angiogenesis [38]. PDGF expression is controlled during 
hypoxia by hypoxia-inducible factor 1 (HIF1) and other HIF1-
independent processes.

CA9 is an enzyme that is generally activated by HIF-1 during 
hypoxia. CA9 expression was found to be a favorable predictive 
factor in patients with metastatic clear-cell RCC [39]. CCND1 
has been demonstrated to be a HIF2 downstream target and has 
been employed to detect HIF activation [40].  Angiogenesis 
indicators are useful in analyzing angiogenesis in tissue and 

the expression of angiogenesis markers is frequently enhanced 
in kidney tumors [41]. The majority of clear cell RCCs have 
mutations in the tumor suppressor gene VHL, which leads to 
increased expression of growth factors such as VEGF, platelet-
derived growth factor (PDGF), insulin-like growth factor 
2 (IGF2), and erythropoietin via downstream induction of 
transcription factors of hypoxia-inducible factor 1 (HIF) [42]. 
The constitutive overexpression of these genes is believed to 
enhance the pathophysiological development of RCC by causing 
excessive vascularization and the inappropriate activation of 
signaling pathways that lead to cell proliferation and apoptosis 
inhibition.

Sunitinib is a tyrosine kinase inhibitor that targets VEGFR1, 
VEGFR2, VEGFR3, and PDGFR/ [43]. Sunitinib has been 
shown in several clinical trials to be particularly effective against 
clear cell RCC [43,44]. This medication has been demonstrated 
to produce an objective response in roughly 30-40% of patients 
[38]. Importantly, sunitinib therapy has been proven to improve 
PFS.

The Relationship Between Angiogenesis Markers and Acute 
Kidney Injury and Mortality following Cardiac Surgery
Acute kidney injury (AKI) occurs in 5% to 42% of individuals 
after heart surgery. Severe or protracted AKI has been linked to 
an increased risk of death, as have end-stage renal disease and 
earlier stages of chronic kidney disease (CKD). Renal hypoxia 
caused by capillary rarefaction is thought to have a role in the 
pathophysiology of the AKI-to-CKD transition.

Before and after surgery, plasma concentrations of two 
proangiogenic markers (vascular endothelial growth factor 
A [VEGF] and placental growth factor [PGF]) and one 
antiangiogenic marker (soluble VEGF receptor 1 [VEGFR1]) 
were measured. After heart surgery, plasma VEGF concentrations 
decreased 2-fold, but PGF and VEGFR1 concentrations 
increased 1.5- and 8-fold, respectively.

High levels of pro-angiogenic markers, vascular endothelial 
growth factor A isoform (VEGF), and placental growth factor 
(PGF), in postoperative plasma, were independently related 
to a lower risk of AKI. High postoperative levels of an anti-
angiogenic marker, soluble VEGF receptor 1 (sVEGFR1), also 
known as sFlt-1, on the other hand, were independently linked to 
an increased risk of AKI. 

VEGF is a crucial growth factor for angiogenesis, playing an 
important role in endothelial survival, peritubular capillary 
maintenance, and interstitial matrix modeling [45,46]. VEGF 
is present largely in podocytes and the thick ascending limb, 
but it is also detected in proximal and distal tubules. VEGFRs 
(VEGFR1 and VEGFR2) are found in peritubular capillaries 
and glomerular capillary loops in endothelial cells. PGF is a 
proangiogenic chemical that stimulates the development of new 
blood vessels via the same receptor that VEGF does, VEGFR1. 
When sVEGFR1 attaches to VEGF or PGF, its activities are 
neutralized, and it acts as an antiangiogenic molecule [47].

VEGF production is enhanced in the presence of hypoxia via 
hypoxia-inducible factor-mediated transcriptional upregulation 
[40)], and it represents an adaptive mechanism that promotes 
repair. The loss of angiogenic factors, particularly VEGF, has been 
linked to capillary loss following AKI [48]. Tubulointerstitial 
fibrosis occurs in animal models after capillary loss, implying that 
hypoxia caused by capillary rarefaction hinders redifferentiation 
of regenerated tubules.
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Upregulation of VEGF improves kidney function, and VEGF 
injection after ischemia-reperfusion injury reduces capillary 
rarefaction [49].

In addition, VEGF treatment during cardiopulmonary bypass 
protects kidney function by improving renal microcirculation 
via nitric oxide-mediated vasodilation and inhibiting neutrophil 
accumulation and leukocyte adhesion [50]. High plasma VEGF 
levels, on the other hand, have been linked to higher mortality in 
experimental sepsis models [51].

Whereas sFlt-1 or anti-VEGF antibody administration has been 
linked to lower mortality [52]. Similarly, elevated serum VEGF 
levels have been linked to an increased risk of AKI and death 
in individuals with influenza and acute respiratory distress 
syndrome [53].
 
Serum PGF levels were not observed to be significantly higher in 
AKI compared to controls in short cross-sectional research [54]. 
Furthermore, giving a single angiogenic agent may promote 
the growth of aberrant vasculature and produce inflammation, 
exacerbating hypoxia and tubulointerstitial fibrosis [45].

Anti-VEGF medications have been linked to the development 
of hypertension, proteinuria, and kidney injury in oncology. 
Similar results can be seen when sFlt-1 is administered during 
pregnancy.

Angiogenesis Markers’ Impact on Cardiovascular Diseases.
01)Effect of glucose on VEGF expression: 
Hypoglycemia enhances VEGF expression, which returns 
to normal after re-equilibration of the glucose concentration 
[55,56]. This is most likely caused by an increase in intracellular 
CA2+ levels in a glucose-depleted environment, which results 
in the activation of protein kinase C. This mechanism activates 
Angiopoiten-1, resulting in increased VEGF expression [57]. 
Not only does hypoglycemia promote VEGF expression, but so 
does hyperglycemia, both of 

02)Inflammation
The presence of inflammatory cells such as macrophages and 
neutrophils is enough to cause angiogenesis. Following cardiac 
necrosis, an influx of inflammatory cells such as macrophages, 
monocytes, and platelets causes the release of cytokines capable 
of boosting the expression of fibroblast growth factor and vascular 
endothelial growth factor [58,59]. The vascular endothelial 
growth factor can activate and recruit additional macrophages to 
stimulate the inflammatory response and angiogenesis.

03)Angiogenic growth factors
The isolation of tumor factors that promote mitogenic activity in 
endothelial cells led to the discovery of angiogenic factors [60-
62]. They are induced by a wide range of cells, and their functions 
include development and tumor angiogenesis. Angiogenic 
growth factors are so named because of their propensity to 
generate cell proliferation in vitro, which contributes to the 
process of angiogenesis in vivo, as evidenced by animal model 
studies. We shall discuss a few of these development factors 
briefly:

04)Fibroblast growth factor(FGF)
The first angiogenic growth factor found as a member of a family 
now consists of at least 20 compounds with significant mitogenic 
potentials, including some of the most potent angiogenic 
peptides [61-63]. Smooth muscle cells and vascular endothelial 
cells create them. The ability of the FGF family to interact with 
heparin-like glycosaminoglycan of the extracellular matrix is 

one of its characteristics [64]. FGF-1 and FGF-2 are the two 
most studied isoforms[65-65].

05)Vascular endothelial growth factor (VEGF)
It was first isolated as a vascular permeability factor from tumor 
cell ascites [69]. It is currently recognized as a multifunctional 
peptide capable of promoting both in vivo and in vitro receptor-
mediated endothelial cell proliferation and angiogenesis. It is 
essential for embryonic vascular development as well as adult 
pathophysiology. VEGF is a family of five members, and their 
action is mediated by three receptors (VEGFR)[70-73].

06)Placenta growth factor
It has limited angiogenic activity in vitro, although it appears 
that PLGF and VEGF co-express in vivo [74-76].

 07)Angiopoietin
Angiopoietin1 (Ang1) is expressed in tissue near blood arteries, 
implying a paracrine method of action. Angiopoietin 2 (ANG2) 
is present at tissue remodeling sites [77-80].

08)VEGF receptors
The effect of VEGF on endothelial cells in humans is 
mediated by two membrane-spanning receptors, VEGFR1 
and VEGFR2. Both receptors have strong VEGF affinity [81-
83]. VEGFR1 promotes cell motility, has a function in blood 
vessel organization, and regulates monocyte and macrophage 
gene expression. While VEGFR2 is important in mitogenesis, 
endothelial cell differentiation, cell migration encouragement, 
and vascular permeability increase,

Expression of Tumor Angiogenic Markers During Tumor 
Growth.
VEGFs and their receptor VEGFR-2 (KDR) have a substantial 
impact on the process of angiogenesis, among other growth 
factors such as PDGFs, FGFs, and cytokines. After activation, 
KDR undergoes auto phosphorylation, which leads to endothelial 
cell proliferation, tumor angiogenesis, tumor development, and 
metastasis.

VEGFR-2 overexpression has been seen in a variety of cancers, 
including breast cancer, cervical cancer, non-small cell lung 
cancer, hepatocellular carcinoma, renal carcinoma, and others. 
Several VEGFR-2 inhibitors have been developed throughout the 
last decade. Angiogenesis suppression by VEGFR-2 inhibition is 
a new technique for developing selective and targeted anticancer 
medicines.
 
Many tumors rely on an angiogenic switch after reaching a 
diameter of 1–2 mm, making tumor angiogenesis one of the 
hallmarks of early malignancy [84]. As a result, the ability to 
visualize and quantify tumor angiogenesis may not only allow 
antiangiogenic treatment monitoring in cancer patients, but it 
may also be an elegant approach for screening and detecting 
cancer at an early, still curable stage, just after the angiogenic 
switch in tumor progression [85].
 
Several molecular angiogenic markers are overexpressed in 
tumors and may be exploited as early cancer detection targets. 
v3 Integrin, endoglin, and vascular endothelial growth factor 
receptor (VEGFR) 2 are three well-studied molecular indicators 
of tumor angiogenesis [86-88]. These angiogenic markers are 
seen on tumor vascular endothelial cells in a variety of solid 
tumors, including breast ovarian [88,89], and pancreatic cancer 
[90], and are thought to be key factors in tumor angiogenesis [89-
93]. Integrin v3, a glycoprotein composed of a noncovalently 
bound subunit, forms a heterodimeric transmembrane receptor 
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for extracellular matrix components such as fibronectin, 
fibrinogen, von Willebrand factor, vitronectin, and proteolyzed 
collagen and laminin [94,95].

These extracellular matrix components stimulate signaling 
cascades that influence gene expression, cytoskeletal 
architecture, cell adhesion, and cell survival, causing tumor cells 
to become more invasive, migratory, and capable of surviving 
in a variety of microenvironments [94]. Endoglin (CD105) 
is a transmembrane glycoprotein that is mostly expressed in 
endothelial cells that are actively undergoing angiogenesis, such 
as tumor endothelial cells [96]. It is a component of the TGF-
1 receptor complex, a pleiotropic cytokine involved in cellular 
proliferation, differentiation, and migration [97]. Endoglin 
inhibition increased TGF-1’s ability to restrict growth, migration, 
and the ability of developed endothelial cells to form capillaries.

VEGFR2 is a tyrosine kinase endothelial receptor that is 
activated by VEGF A. The VEGF/VEGFR2 pathway activates 
various signaling networks, resulting in endothelial cell 
survival, mitogenesis, migration, differentiation, and vascular 
permeability [98].

It is essential in developing novel molecular imaging 
methods aimed at seeing tumor angiogenesis markers that are 
overexpressed in early-stage cancer for screening reasons. 
Knowledge of the temporal expression levels of tumor 
angiogenic markers could also be relevant for drug development 
and personalizing future treatment regimens in cancer patients.

Targeted contrast material–enhanced ultrasonography (US) is a 
potential noninvasive molecular imaging technique that permits 
in vivo assessment of tumor angiogenesis molecular markers 
[99-101]. Because the contrast chemicals used for this imaging 
method have a diameter of several micrometers, they remain 
inside the vascular compartment, allowing for the exclusive 
observation of angiogenesis-related molecular markers 
expressed on tumor vascular endothelial cells [102].

Discussion 
By all accounts and based on verified results, it appears that 
understanding the activation of proangiogenic factors, estimating 
the pathway of angiogenesis, and studying the influence of 
antiangiogenic factors may aid in the development of an effective 
treatment for diseases with pathological angiogenic conditions, 
especially for several malignancies.

Angiogenesis is thus a potential therapeutic target. The potential 
use of several angiogenesis inhibitors is now being studied 
in clinical trials. A greater understanding of the biology of 
angiogenesis may lead to the identification of new therapeutic 
targets for a variety of disorders connected with this complex 
process.

Tumor angiogenesis is important in tumor growth and 
metastasis. Tumor angiogenesis is a complex process involving 
several components and several distinct or similar signal 
pathways. Despite fast development in the field, there are 
numerous unanswered questions about the molecular process 
of tumor angiogenesis. Once we fully comprehend the precise 
activities of these pro-and anti-angiogenic molecules in tumor 
angiogenesis, therapeutic use of those innovative study findings 
for tumor therapy will be achievable [10-105].
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