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Introduction
Understanding and predicting species spatial patterns through 
Species Distribution Models (SDM) is pivotal for ecology, 
evolution and conservation [1]. SDMs quantify the relationship 
between species occurrence and abundance with biotic and 
abiotic factors in order to gain ecological and evolutionary 
understanding [2]. This way SDMs allow us to predict 
distributions across landscapes and make future predictions 
based on identified drivers, as well as other latent variables such 
as spatial or spatiotemporal correlation effects. Generally, a SDM 
is composed by three types of predictors: non-spatial covariates; 
spatially structured covariates; and spatial or spatiotemporal 
autocorrelation effects that accommodate the spatial or 
spatiotemporal autocorrelation of the data that is unaccounted 
by our covariates.

Spatial autocorrelation refers to the dependence between pairs of 
observations in space. In SDMs, spatial effects allow us to predict 
better and reduce Type I errors in the presence of covariates 
[3,4]. In species distribution, spatial autocorrelation may arise as 
a combination of different factors such as: a geographical range 
dispersion process, e.g. colonization; unaccounted environmental 
or biotic drivers; and other highly dynamic processes such as 
wind and current [5-7]. These drivers can influence species 
distribution at all scales, from micrometers to continental and 
ocean-wide scales [8]. However, the size, spacing and extent 
of sampling units will constrain the scale of inferable drivers, 
and the scale of spatial autocorrelation [7,9]. In other words, if 
we sample at a kilometer scale, we cannot infer processes at a 

smaller scale, and inversely, if our study area is one kilometer 
long, we cannot infer processes that affect at a larger scale.

The statistical interpretation of a spatial effect is related to the 
sign and link function of our linear predictor, but in general 
terms, positive values refer to areas where we expect more 
than that predicted by the rest of the linear predictor and vice 
versa. Ecologically, many SDM studies have linked spatial 
effects to biological features like home-range, hot-spot size 
and unaccounted environmental drivers, providing reasonable 
arguments [5, 10,11]. For example, given a species that is driven 
by two environmental variables, one that drives the large-scale 
variation and another that drives the small-scale variation, 
the residual spatial pattern of a SDM that includes one of the 
two covariates will resemble the pattern of the unaccounted 
explanatory variable, either the large-scale or small- scale one. 
However, as we mentioned before, reality behind ecological 
processes is often high dimensional and variables that drive 
spatial correlation can occur at several different scales. In fact, 
SDMs are seldom able to identify more than a small portion of 
all the drivers that influence the distribution of the species under 
study. This results on spatial effects that are potentially driven by 
many different unaccounted drivers, diluting their interpretability 
in terms of an individual process. Although this interpretation 
issues have sporadically been addressed in the literature, many 
modellers fail to acknowledge this probably due to the lack of an 
explicit study that shows this [7,12-16].

The aim of this article was to provide a practical demonstration 
that spatial effects are able to smooth the effect of multiple 
unaccounted drivers, making the biological interpretation of 
spatial effects rather complicated. To do so, we used model-
based spatial models applied over simulated species distribution 
surfaces. Simulated fields were based on three spatially structured 
environmental covariates acting at different spatial scales, and a 
geographical range dispersion process.

Simulation
We used an iterative simulation approach to produce spatially 
aggregated distributions (link to code in Annex A). At each 
iteration we added a fixed number of new specimens to the study 
area based on a probability surface constituted by three spatially 
structured covariates, each operating at different scales (i.e., 
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Abstract
Most Species Distribution Models include spatial effects to 
improve prediction and reduce Type I errors. Ecologists tend to try 
ecologically interpret the spatial patterns displayed by the spatial 
effect. However, spatial autocorrelation may be driven by many 
different unaccounted drivers, which complicates the ecological 
interpretation of fitted spatial effects. This study wants to provide a 
practical demonstration that spatial effects are able to smooth the 
effect of multiple unaccounted drivers. To do so we use a simulation 
study that fit model-based spatial models using both geostatistics and 
2D smoothing splines. Results show that fitted spatial effects resemble 
the sum of the unaccounted covariate surface(s) in each model.
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small, medium and large scale), plus a spatial aggregation process 
driven by the abundance of the neighboring areas, mimicking 
the colonization of a plant species for example. As a result, our 
simulated species distributions were driven by the sum of four 
different effects (Figure 1): the influence of three explanatory 
environmental variables operating at different spatial scales (S = 
small, M = medium and L = large) and a spatial dispersal effect 
that increase the spatial autocorrelation of the response variable.

Figure  1: Visualization  of  the  different  autocorrelated  
drivers  that  influence the abundance pattern in a simulated 
scenario.  S, M and L refer to the small, medium  and  large  
scaled  covariate  fields,  respectively.   Residual  aggregation 
refers to the geographical range dispersion.  White crosses refer 
to the simulated 100 samples.

We simulated fifty different scenarios, selected 100 random 
samples for each scenario and fitted all the possible combinations 
of model-based spatial models that ranged from a purely spatial 
model to a full model that accounted for the three covariates (see 
Table 1). We used two spatial modelling approaches, geostatistics 
through the Integrated Nested Laplace Approximation approach 
(INLA) and 2D smoothing splines through the MGCV package 
for R [1719].

Table 1:  Summary of fitted models.  W refers to a geostatistical 
spatial corre- lation term, S, M and L refer to the small, medium 
and large scale covariates, respectively.

Model Linear predictor Missing covariates
M 0 0 + W S, M&L
M S 0+S+W M & L
M M 0+M+W S & L
M L 0+L+W S & M

M ML 0+M +L+W S
M SM 0+S+M+W L
M SL 0+S+L+W M

M SML 0+S+M +L+W {

Our aim was to assess the resemblance between fitted spatial 
effects and un- accounted covariate surface combinations. 
Resemblance was assessed through the similarity in pattern score 
(SIP) [20]. SIP scores are bound between zero and one, and high 
scores denote high similarity in pattern and vice versa. For each 
simulated scenario, we calculated the SIP score between the 
spatial effect of every fitted model (rows in Table 2) and all the 
possible different combinations of covariate surfaces (columns 
in Table 2), and recorded the absolute difference between the 
best SIP score and the rest (i.e., SIP differences calculated per 
row in Table 2). This way, the spatial effect that best resembled 
a given combination of covariate surfaces scored a zero and 
that with the worst resemblance recorded the highest value (see 
Annex for a more detailed explanation of the procedure). As a 
result, we obtained fifty scores per model and combination of 
covariate surfaces. Finally, we summarised these scores by their 
mean and standard deviation.

Results
Results show that fitted spatial effects resemble the sum of the 
unaccounted covariate surfaces in each model (see highlighted 
diagonal scores in Table 2). Fitted 2D splines using generalized 
additive models (GAM) seemed to perform a little worse than 
model based-geostatistics, probably due to the default selection 
of knots, but the overall pattern is very similar. This result 
suggests that spatial effects are able to smooth complex residual 
spatial patterns originated by a set of covariates that operate at 
very different scales. For example, model M_M, which only 
accounts for the mid-scale covariate, estimates a spatial effect 
that resembles the aggregation of the small-scale and large-scale 
covariates (S and L respectively). Similarly, the spatial effect 
of model M 0, which is a purely spatial model (no covariates 
included), mirrors the combination of all three covariate surfaces 
(S, M and L). In the particular cases where we included two 
covariates (i.e., only one unaccounted covariate), spatial effects 
resembled the missing covariate. At this point, the question is: 
how many times do SDMs account for all but one driver? One 
can only speculate this answer but our guess would be: hardly 
ever.
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Combination of drivers
Model Residual S M L S & M S & L M & L S, M & L

M 0 0.62 (0.14) 0.30 (0.13) 0.27 (0.18) 0.35 (0.22) 0.11 (0.06) 0.17 (0.08) 0.12 (0.15) 0.01  (0.02)
M S 0.56 (0.18) 0.66 (0.22) 0.19 (0.16) 0.25 (0.19) 0.33 (0.17) 0.41 (0.16) 0.01  (0.03) 0.16 (0.12)

M M 0.47 (0.17) 0.19 (0.15) 0.71 (0.25) 0.26 (0.22) 0.26 (0.21) 0.04  (0.08) 0.37 (0.21) 0.11 (0.14)

M L 0.55 (0.17) 0.21 (0.14) 0.24 (0.21) 0.78 (0.35) 0.04  (0.04) 0.29 (0.20) 0.33 (0.24) 0.08 (0.12)
M SM 0.34 (0.17) 0.50 (0.24) 0.61 (0.28) 0.07  (0.13) 0.48 (0.26) 0.22 (0.15) 0.21 (0.18) 0.24 (0.20)
M SL 0.41 (0.23) 0.51 (0.21) 0.08  (0.11) 0.67 (0.35) 0.18 (0.11) 0.53 (0.25) 0.17 (0.20) 0.20 (0.16)
M ML 0.36 (0.18) 0.06  (0.10) 0.59 (0.24) 0.65 (0.26) 0.11 (0.11) 0.13 (0.14) 0.60 (0.24) 0.16 (0.17)

M SML 0.09  (0.15 0.27 (0.16) 0.40 (0.22) 0.43 (0.24) 0.25 (0.16) 0.28 (0.18) 0.40 (0.24) 0.25 (0.22)

M 0 0.50 (0.09) 0.18 (0.10) 0.11 (0.08) 0.07 (0.07) 0.09 (0.08) 0.12 (0.08) 0.04  (0.05) 0.04  (0.05)
M S 0.50 (0.09) 0.38 (0.17) 0.10 (0.10) 0.08 (0.09) 0.22 (0.14) 0.28 (0.17) 0.02  (0.04) 0.14 (0.11)
M M 0.48 (0.10) 0.15 (0.11) 0.35 (0.19) 0.03  (0.04) 0.24 (0.16) 0.07  (0.08) 0.23 (0.17) 0.15 (0.14)
M L 0.33 (0.19) 0.13 (0.13) 0.06  (0.08) 0.16 (0.19) 0.08  (0.10) 0.16 (0.17) 0.11 (0.12) 0.11 (0.13)
M SM 0.49 (0.10) 0.38 (0.17) 0.36 (0.19) 0.00  (0.02) 0.42 (0.22) 0.23 (0.14) 0.18 (0.14) 0.28 (0.19)
M SL 0.35 (0.17) 0.25 (0.19) 0.05  (0.08) 0.16 (0.17) 0.16 (0.13) 0.26 (0.19) 0.10 (0.12) 0.18 (0.13)
M ML 0.33 (0.16) 0.09  (0.10) 0.20 (0.19) 0.14 (0.16) 0.16 (0.14) 0.13 (0.14) 0.23 (0.19) 0.18 (0.14)
M SML 0.34 (0.17) 0.23 (0.21) 0.20 (0.20) 0.14 (0.20) 0.27 (0.20) 0.26 (0.19) 0.22 (0.18) 0.28 (0.17)

Table  2:  Resemblance  between  fitted  spatial  effects,  using geostatistics  and  2D  smoothing  splines,  against  all  the  
possible combinations of covariate surfaces (per simulation).  Scores must be read by row,  and reflect the difference between 
the best
SIP  score  and  all  possible  combinations  of  drivers  for  each  simulation  and  model.   Therefore,  lower  values  represent  
higher resemblance and have been highlighted in bold.  We present the mean difference and standard deviation (in parenthesis).  

Discussion
Many studies have analyzed the characteristics of spatial effects 
to describe the unaccounted ecological mechanisms that drive 
the distribution of species and try to associate spatial effect 
patterns to single unaccounted drivers. However, most species 
distributions are driven by a large number of factors and we are 
seldom able to identify most of these drivers in our statistical 
models. As a consequence, SDM spatial effects constitute a 
combination of many unaccounted factors [5-7].

This study used a simulation study to illustrate the difficulty 
in interpreting spatial effects with regards to unaccounted 
environmental drivers. Readers must realize that did not attempt 
an exhaustive account of all possible cases, in- stead, we aimed 
at illustrating our point using a simple and intuitive approach. 
Fitted spatial effects resembled the sum of the unaccounted 
covariate surfaces, including spatial patterns originated by 
covariates that operated at very different scales. Therefore the 
biological interpretation of spatial effects may only be valid when 
the unexplained spatial heterogeneity of the data is characterized 
by a single dominant driver. However, the environmental and 
ecological processes that drive the distribution of species are 
complex and diverse, and one could only arbitrarily assume 
that there is only one covariate missing in our SDM predictor to 
make biological interpretations over fitted spatial effects.

In this regard, one could use a multiresolution decomposition 
approach to identify dominant features within the residual 
spatial correlation of the data [15,21]. This method essentially 
estimates the range of spatial correlation at different resolutions 
of the data, or in this case, residuals of the SDM to help us 
identify the scale-dependent features within the spatial effect of 
the residuals. Then, assuming that each scale is characterized by 
a single dominant driver, one could relate them to underlying 
process generating mechanisms [12].

Conclusions
Spatial autocorrelation is a common feature in ecological data. 
As a consequence, spatial correlation models are important 
to correctly estimate covariate standard errors and therefore 
reduce Type I errors. Additionally, spatial cor- relation terms 
estimate the residual spatial structure of the data, improving the 
predictive capacity of our models at locations that are within 
range. In ecology, residual spatial patterns are potentially driven 
by complex multivariate and multi-scaled systems, which can 
be accommodated by a single spatial effect. Therefore, the 
biological interpretation of spatial effects is very difficult. A 
multiresolution decomposition of residual spatial patterns could 
help us identify the scale-dependent features within the spatial 
correlation structure of the residuals assuming that each scale is 
characterized by a single dominant driver [21].

A    Annex:  script and further explanations

The R script that we used to do all the analysis is available 
at:  https://github. com/iparperspective/Understanding-spatial-
effects-/blob/main/Simulation_ script%20understanding%20
spatial%20effects.R

The aim of this annex is to explain the procedure that we 
followed to create Table 2.  To do so we use a single simulated 
species distribution (as compared to 50 simulations in the study) 
that is also driven by three spatially structured environmental  
covariates  acting  at  different  spatial  scales  and  a  geographical 
range dispersion process.

We fitted all the models described in Table 1 and we computed 
SIP scores between each model’s spatial effect and all the 
possible different combinations of covariate surfaces.  By doing 
so, we get Table 3:
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See Annex for a more detailed explanation of the procedure that 
we followed.

Table  3:  SIP  scores  between  fitted  spatial  effects  and  all  the  
combinations  of covariate  surfaces.   Scores  must  be  read  by  
row.   Values  closer  to  one  reflect bigger resemblance between 
spatial fields.

By replicating the simulation 50 times we would get 50 SIP 
scores for each position,  which  could  be  summarised  by  the  
mean  and  standard  deviation  of these 50 values.  However, we 
decided to use the difference between the best SIP score for each 
model and combinations of covariate fields, i.e.  differences by 
row in the Table 3, because results were clearer.  This way Table 
3 becomes Table 4: where zero values represents the best SIP 
score per model (by row) and the rest of the scores represent the 
SIP score difference with respect to the best score by row.

Table  4:  The  difference  in  score  between  the  best  SIP  score  
and  the  rest  for each model (by row).  Values closer to zero 
reflect bigger resemblance between spatial fields.

where zero values represent the best SIP score per model (by 
row) and the rest of the scores represent the SIP score difference 
with respect to the best score by row.
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